Disk potential functions for quadrics

نویسندگان

چکیده

We compute the disk potential of Gelfand–Zeitlin monotone torus fiber in a quadric hypersurface by exploiting toric degenerations, Lie theoretical mirror symmetry, and structural result Fukaya category.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic functions, central quadrics, and twistor theory

Solutions to the n-dimensional Laplace equation which are constant on a central quadric are found. The associated twistor description of the case n = 3 is used to characterise Gibbons-Hawking metrics with tri-holomorphic SL(2,C) symmetry.

متن کامل

Inverse nodal problem for p-Laplacian with two potential functions

In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...

متن کامل

Convex quadrics

We describe convex quadric hypersurfaces in Rn and characterize them as convex hypersurfaces with quadric sections by a continuous family of hyperplanes.

متن کامل

Grids and transforms for band-limited functions in a disk

We develop fast discrete Fourier transforms (and their adjoints) from a square in space to a disk in the Fourier domain. Since our new transforms are not unitary, we develop a fast inversion algorithm and derive corresponding estimates that allow us to avoid iterative methods typically used for inversion. We consider the eigenfunctions of the corresponding band-limiting and space-limiting opera...

متن کامل

Notes on functions on the unit disk

As usual, R denotes the real numbers, Z denotes the integers, and C denotes the complex numbers. Thus each α ∈ C can be expressed as a + b i, where a, b are real numbers and i = −1. We call a, b the real and imaginary parts of α, and denote them Reα, Imα, respectively. If z is a complex number, with z = x + y i where x, y are the real and imaginary parts of z, then we write z for the complex co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fixed Point Theory and Applications

سال: 2023

ISSN: ['1661-7746', '1661-7738']

DOI: https://doi.org/10.1007/s11784-023-01049-9